

Leveraging constellation mapped read technology for variant detection in complex, medically relevant genes

Katie Larkin¹, Yueyao Gao¹, Michelle Cipicchio¹, Mark Fleharty¹, Victoria Popic¹, Marina DiStefano¹, Sean Hofherr¹, Niall Lennon¹ ¹Broad Clinical Labs, Broad Institute of MIT and Harvard, Cambridge MA, USA

Challenging genomic regions limit short-read WGS

Whole genome sequencing (WGS) has transformed rare enabling diagnostics comprehensive detection of pathogenic variants.

However, certain clinically relevant genomic regions remain inaccessible via standard short-read WGS (srWGS) due to:

- Segmental duplications
- Paralogous genes and their pseudogenes
- Tandem Repeats

These regions can contain disease-causing variants that short-read sequencing alone cannot reliably detect.

Clinical labs must use alternative or ancillary assays (MLPA, Long-range PCR, etc) to resolve variants, which is costly and time consuming.

Real-world impact of a paralogous gene: PMS2

Lynch syndrome is an inherited colorectal cancer prediposition caused by pathogenic variants in DNA mismatch repair (MMR) genes (MLH, MSH2, MSH6, PMS2).

Pathogenic variants in PMS2 are estimated to account for anywhere from 10-35% of Lynch syndrome cases depending on the study¹, but are frequently underdiagnosed due to high sequence similarity to its pseudogene, PMS2CL.

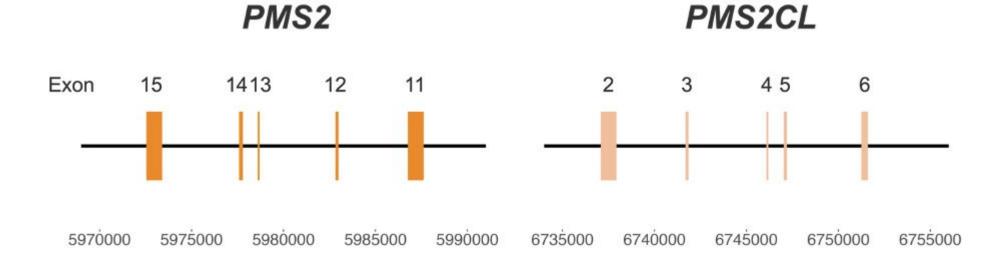


Figure 1. High homology region between PMS2, a Lynch syndrome gene, and its pseudogene, PMS2CL using coordinates from hg38.

Current clinical laboratory practice:

Initial NGS result

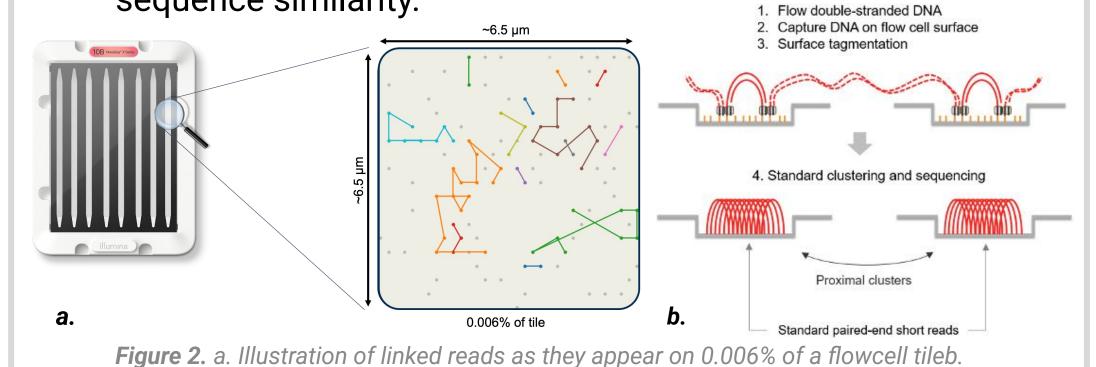
Variants identified in the PMS2/PMS2CL region cannot be immediately assigned to the correct locus

Multi-step confirmatory testing

- Long-range PCR targeted amplification followed by Sanger sequencing
- MLPA Used if necessary to confirm copy number or large rearrangements

Reporting

 If confirmed, variants in the homologous region of PMS2 can be returned


MLPA testing is sometimes still not high-resolution enough to resolve certain cases, leading to an inconclusive result.

A potential solution

Direct sequencing of native DNA on NovaSeq X Plus

Constellation is a library-free sequencing approach that enables genomic DNA to be directly loaded onto a NovaSeq X (NVX) flowcell.

proximity information sequencing, spacial between neighboring fragments is captured, allowing accurate read mapping even in regions with high sequence similarity.

originating from the same template molecules Constellation's performance is driven by three key

Overview of the workflow demonstrating proximity information from nearby clusters

innovations: Native DNA input - eliminates fragmentation and

- amplification prior to sequencing, preserving long-range genomic context
- . Proximity-based mapping reads originating from adjacent locations on the flowcell are used to infer long-range haplotypes
- Enhanced alignment algorithms specialized computational methods, like multi-region joint detection (MRJD) reconstructs sequence contiguity and phase from these spatial clusters

Together, these features enable accurate variant calling and phasing in regions that were previously inaccessible to srWGS.

When benchmarked against the T2T truth set, calling from constellation data is equivalent to or slightly better than srWGS.

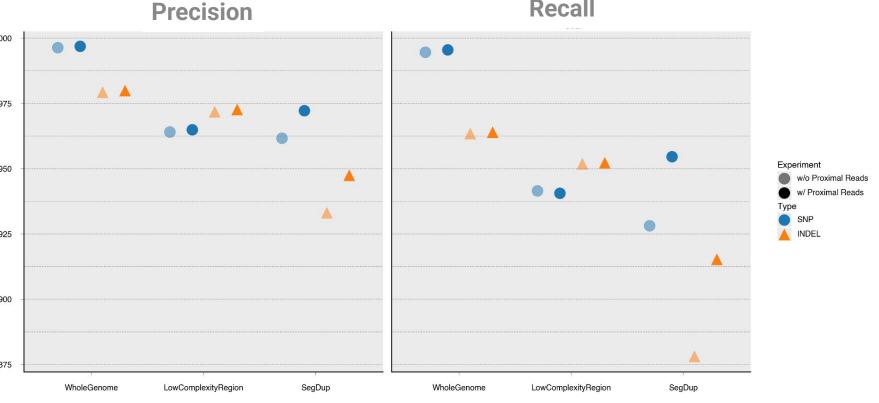


Figure 3. HG002 benchmarking against the T2T v1.1 truth set

What did we do?

To assess the ability of constellation to recover coverage and resolve variants in difficult genomic regions, we reanalyzed a set of 9 clinical samples with known variants, previously analyzed with srWGS, which failed to detect or phase variants in clinically relevant genes including PMS2, PMS2CL, and SMN1.

- For this follow up analysis, DNA was re-sequenced on NVX using constellation chemistry.
- Reads were processed using DRAGEN with the MRJD caller

This analysis focused on both coverage recovery and detection of copy number variation in duplicated regions

Results

Constellation recovered callable territory in difficult to map genes.

<u> </u>		
	w/o	w/
	Proximal	Proximal
	Reads	Reads
% Callable <i>PMS2</i> Bases	74.03%	86.43%

Table 1. Across 40 genomes, constellation boosted the percentage of callable

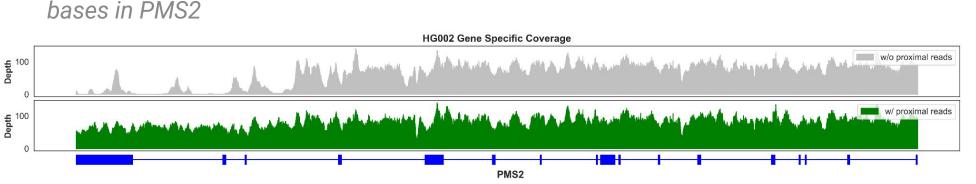
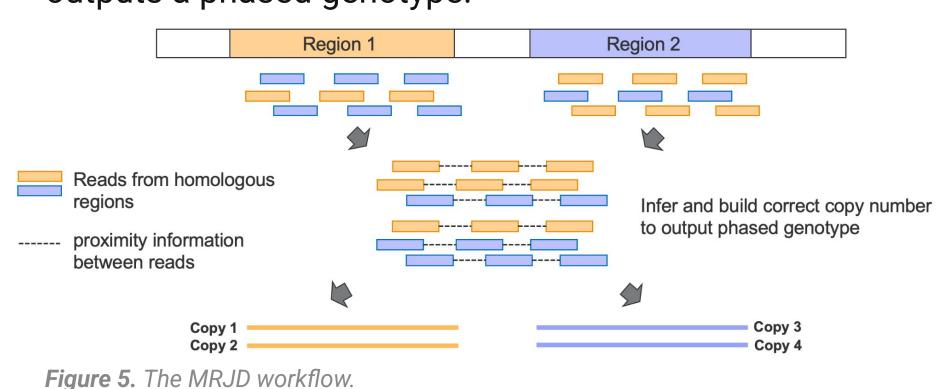
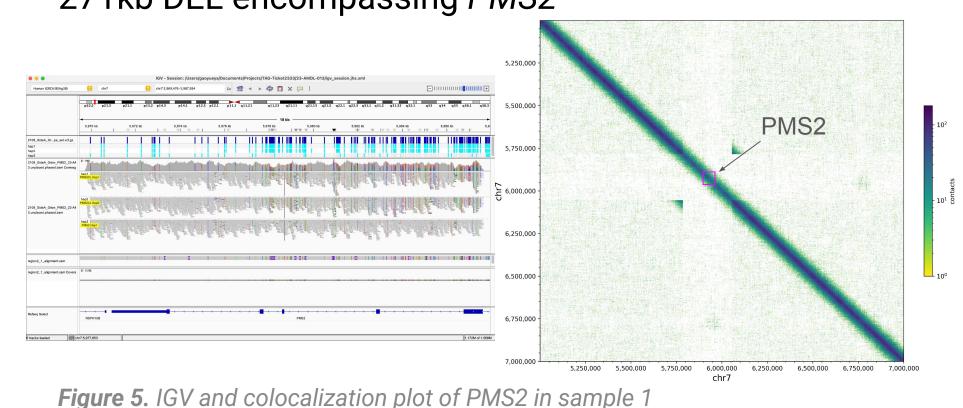



Figure 4. Coverage in of PMS2 in an HG002 genome, with and without proximal

In a next key step, MRJD jointly analyzes reads, using proximity information, across all potential origins, and outputs a phased genotype.



				srWGS		Constellation	
				Variant	Variant	Variant	Variant
Sample	Gene of Interest	Event Type	Variant	Called	Phased	Called	Phased
1	PMS2	DEL	chr7:5783926-6055303	X	X	1	√
2	PMS2CL	DUP	chr7:6707807-6751888	X	X	1	1
3	PMS2CL	SNP	chr7:5977596, G>A	1	X	1	1
4	SMN1	DEL	1 сору	1	X	1	1
5	SMN1	DEL	1 сору	1	X	1	1
6	SMN1	DEL	1 сору	1	X	1	1
7	SMN1	DEL	1 сору	1	X	1	√
8	SMN1	DEL	0 сору	1	X	1	√

Table 2. Nine previously sequenced samples were able to be detected by and phased by constellation where both were not possible with standard short-read sequencing.

Visualizing PMS2 variants results in samples reanalysed using constellation

Sample 1: Constellation found a previously unidentified 271kb DEL encompassing *PMS2*

Sample 2: A variant that previously mapped to PMS2 was shown instead to have a 44kb DUP encompassing PMS2CL that was not detected by MLPA

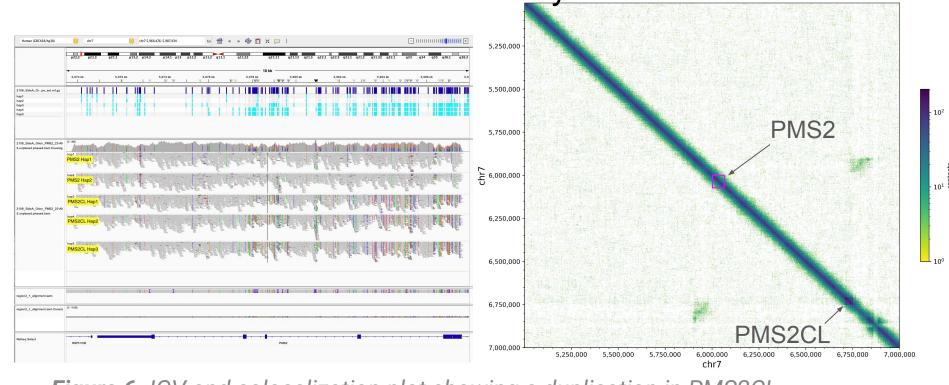


Figure 6. IGV and colocalization plot showing a duplication in PMS2CL

Constellation is a powerful tool

Constellation expands diagnostic yield by resolving variants in regions inaccessible to srWGS.

Eliminates reliance on costly, time-intensive ancillary assays.

Supports scalable rare disease testing while maintaining WGS as a single front-line test.

Advantages of constellation:

- No library preparation native DNA can be sequenced directly
- Improved variant detection in high-homology and duplicated regions
- Accurate haplotype phasing
- Scalable easily integrated into existing NVX workflows and DRAGEN pipelines

This approach moves clinical genomics closer to a single-test, whole-genome solution that captures the full spectrum of medically relevant variation.

References

- 1.Andini, K. D. et al. PMS2-associated Lynch syndrome: Past, present and future. Front Oncol 13, 1127329 (2023).
- 2. Overcoming the challenges in PMS2 high-homology regions for improved detection of pathogenic variants associated with Lynch syndrome. https://www.illumina.com/content/illumina-marketing /amr/en_US/science/genomics-research/articles/PM S2-small-variant-detection.html
- 3. Introducing constellation mapped read technology. https://www.illumina.com/content/illumina-marketing /amr/en_US/science/genomics-research/articles/con stellation-mapped-read-technology.html.

Acknowledgements

Special thank you to Yueyao Gao, who performed this analysis, and to the Illumina constellation team, who have supported us throughout this work.

Contact

Katie Larkin klarkin@broadinstitute.org

Broad Clinical Labs genomics@broadinstitute.org

broadclinicallabs.org